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Physical sputtering 

Molecular Dynamics simulation of 50eV He  Be 

 Energetic particle impact involves a 
complex collision cascade during 
which: 

 The projectile may be reflected 
back out of the surface 

 Surface atoms may be ejected 
out from the surface (= physical 
sputtering) 

 The surface may be left with 
crystal damage. 

Energetic particle impact is a stochastic process and is therefore described by 
giving average yields for the different processes 

 The projectile may remain in the 
surface (=implantation) 
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•  Physical sputtering is the kinetic ejection of surface 
atoms by incident energetic ions or atoms due to 
collision processes. 

•  As surface atoms can escape only if it receives an 
energy larger than the surface binding energy, a 
threshold energy for the incident particles is 
required. 

•  In fusion application physical sputtering by 
hydrogen ions and atoms is important, but also the 
self-sputtering due to returning impurity atoms. 

Physical sputtering 
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•  TRIM Monte-Carlo Code 
simulation 

Heavy ions: 
•  large collision cascade 
•  isotropic velocity distribution 
•  yield proportional to energy 

deposited in first 0004fy 
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stopping power 

W. Möller PSE 2002 Tutorial 

Physical sputtering 

 Stopping power is velocity dependent 

 Fast particles stopping 
dominated by Se 

 Slow particles stopping 
dominated by Sn 

E-ΔE 
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Physical sputtering 
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Threshold energy 
•  Light ion sputtering in 

fusion application is 
dominated by threshold 
effects 

•

 

expla inpesc /0  en0 sc
q 1.s 
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Ansatz: 
(P. Sigmund (1969)) 

Sputtering yield proportional to 
the energy deposited into 
collisions near the surface 

Y(ε)  α  Sn(ε)x=0/Es 

Y(ε)  =  Q(M1,M2,ES)*fH(ε) 

Es = Surface binding energy ≅ ΔH 
heat of sublimation 

Theory for sputtering in isotropic collision cascades  

Physical sputtering 
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physical sputtering 

•  Physical sputtering is the kinetic ejection of surface atoms by 
incident energetic ions or atoms due to collision processes 

  (playing pool with surface atoms). 

•  As surface atoms can escape only if it receives an energy larger 
than the surface binding energy, a threshold energy for the 
incident particles is required. 

•  In fusion application sputtering by hydrogen and helium ions and 
atoms is important, but also the self-sputtering due to returning 
impurity atoms. 
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Chemical Erosion 

•  Chemical erosion originates from the formation and release of 
volatile molecules in the interaction of incident plasma particles 
and target atoms. 

•  In fusion application the formation of hydrocarbons in the 
interaction of hydrogen atoms with carbon surfaces is the 
dominant example of chemical erosion 

• 
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• hydration at room temperature of more than 90% 
   of all possible adsorption sites 

chemical erosion: microscopic model 

•  • erosion maximum as function of 
temperature 

Hydration and erosion circle: 
Horn et al., Chem. Phys. Lett. 231, 193 (1994) 
Zecho et alJ. Phys. Chem. B 105 (2001). 
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chemical erosion 

•  chemical erosion originates from the formation and release of 
volatile molecules in the interaction of incident plasma particles 
and target atoms. 

•  in fusion application the formation of hydrocarbons in the 
interaction of hydrogen atoms with carbon surfaces is the 
dominant example of chemical erosion. 

•  as chemical reactions are involved, chemical erosion shows a 
strong temperature dependence in contrast to physical 
sputtering. 

•  chemical erosion can occur with low-energy ions or thermal 
atoms and does not require a threshold energy. 

•  erosion will only take place at the very surface (1.4 nm 
pentration depth) or at the end of range of energetic particles.   
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it is not chemical erosion 
H0 at T > 400 K with a max. at 
≈
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M. Schlüter, J. Nucl. Mater. 376, 33–37 (2008). 

•  Temperature dependence 
similar as for chemical 
erosion 

Chemical Sputtering 

Temperature dependence 

•  Radiation damage 
enhances chemical 
reactivity 

•  Value at Tmax is larger than 
sum of chemical erosion 
and low temperature 
chemical sputtering 
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Radiation enhanced sublimation 

•  Arrhenius activation energies 
are well below the graphite 
sublimation energy. 

•  Process occurs for both inert 
and reactive sputtering species 

Exponential fits yield activation energies 

•  Experiments indicate that 
eroded species have thermal 
energies 
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Radiation enhanced sublimation 

•  Diffusion trapping model 
quantitatively describes RES 

•  Damage profile calculated by 
TRIM. 

•  Under fusion conditions the influence 
of RES is not very pronounced: 

 At high fluxes the vacancy concentration 
becomes very high leading to fast 
annihilation of the more mobile 
interstitials. 

 For low particle energies close to the 
damage threshold no Frenkel pairs are 
created. 
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Radiation enhanced sublimation 

•  At high temperatures graphite exhibits an exponential increase 
in the erosion rate during energetic particle impact that can not 
be explained by sublimation 

•  A model using the sublimation of weakly bonded surface 
defects, quantitatively describe the process. 

•  Similar effects are also seen for metallic targets at very high 
fluxes and temperatures.  more relevant for fusion. 
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Impact of impurities on fusion plasmas 

•  As atoms are eroded from the first wall they enter the plasma 

•  In the plasma they are ionized and transported throughout the 
machine. 

•  What how does that affect the plasma ? 
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Impact of impurities on fusion plasmas 
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Ignition Criteria 

•  Ignition: The neutrons leave the plasma, the α-particles 
are confined and heat it. Only their energy should enter 
the balance! Efus → Eα 

Impact of impurities on fusion plasmas 
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•  The α-particles also dilute the plasma, as they are intrinsically coupled to 
fusion power (3.53•10
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• Other impurities have a similar impact as He 

  No ignition for core W conc. > 10-4 

Ignition condition 

PR 

Impact of impurities on fusion plasmas 
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Impact of impurities on fusion plasmas 

•  As atoms are eroded from the first wall they enter the plasma 

•  In the plasma they are ionized and transported throughout the 
machine. 

•  In the plasma they radiate energy through line radiation and 
Bremsstrahlung. 

•  They also dilute the plasma. 

•  The radiative loss of energy from the plasma and its dilution 
through these impurities has fundamental implications for the 
operation of a fusion reactor! 

•  The erosion of wall components poses a lifetime problem 

•  The co-deposition of impurities (mainly C) with fuel ions poses 
a radiation hazard 


